Ressource en auto-formation : 4.8. Attack against Algebraic Geometry codes

In this session, we will present an attack against Algebraic Geometry codes (AG codes). Algebraic Geometry codes is determined by a triple. First of all, an algebraic curve of genus g, then a n-tuple of rational points and then a divisor which has disjoint support from the n-tuple P. Then, the Algeb...
cours / présentation - Création : 05-05-2015
Par : Irene MARQUEZ-CORBELLA, Nicolas SENDRIER, Matthieu FINIASZ
Partagez !

Présentation de: 4.8. Attack against Algebraic Geometry codes

Informations pratiques sur cette ressource

Langue du document : Anglais
Type : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 6 minutes 46 secondes
Contenu : vidéo
Document : video/mp4
Poids : 193.65 Mo
Droits d'auteur : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.

Description de la ressource en auto-formation

Résumé

In this session, we will present an attack against Algebraic Geometry codes (AG codes). Algebraic Geometry codes is determined by a triple. First of all, an algebraic curve of genus g, then a n-tuple of rational points and then a divisor which has disjoint support from the n-tuple P. Then, the Algebraic Geometry code is obtained by evaluating at P all functions that belong to the vector space associated to the divisor E. Some properties of these codes are nearly optimal codes, that is, their designed minimum distance is nearly the optimal one. Moreover, the dual of an AG-code is again an AG-code. What about using Algebraic Geometry codes in code-based cryptography? Janwa and Moreno suggest to use Algebraic Geometry codes for the McEliece cryptosystem. This is a suitable proposal since these codes are nearly optimal and have efficient decoding algorithms. If we talk about codes over curves of genus zero then we are talking about generalized Reed-Solomon codes, as we will see in the next slides. So, for a curve of genus 0, this proposal is broken. If we talk about codes over curves of genus 1 and 2, then this proposal is broken by Faure and Minder. However, this attack has several drawbacks which makes it impossible to extend to a higher genera. But there is an attack for the general case. We will explain here this general attack. First over generalized Reed-Solomon codes and then we will give an idea on how it works for the general case. Recall that the generalized Reed-Solomon codes are Algebraic Geometry codes over curves of genus 0. Indeed, if we consider the projective line, this curve has genus 0 and its points are of the form (x:y) Now, we will consider P the n-tuple of points formed by these points and we take E to be K-1 times the point at the infinity. A basis of the vector space associated to this divisor is the following one. And if we evaluate this basis at the points P, we get a generator matrix of this AG code, which is also a generator matrix of a generalized Reed-Solomon code of dimension k associated to the pair (a,1), the all-ones vector.

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Domaine(s)

Document(s) annexe(s) - 4.8. Attack against Algebraic Geometry codes

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

DIFFUSION

Cette ressource en auto-formation vous est proposée par :
Canal-U - accédez au site internet
Sur les réseaux sociaux :

EN SAVOIR PLUS

  • Identifiant de la fiche
    32953
  • Identifiant OAI-PMH
    oai:canal-u.fr:32953
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-U

Ressources en auto-formation sur les mêmes thèmes

Présentation de la ressource en auto-formation 4.7. Attack against Reed-Muller codes cours / présentation
4.7. Attack against Reed-Muller codes
Auteur(s) : MARQUEZ-CORBELLA Irene, SENDRIER Nicolas, FINIASZ Matthieu
Description : In this session, we will introduce an attack against binary Reed-Muller codes. Reed-Muller codes were introduced by Muller in 1954 and, later, Reed provided the first efficient decoding algorithm for these codes. Reed-Muller are just a generalization of generalized Reed-Solomon codes. Generalized ...
Présentation de la ressource en auto-formation 4.9. Goppa codes still resist cours / présentation
4.9. Goppa codes still resist
Auteur(s) : MARQUEZ-CORBELLA Irene, SENDRIER Nicolas, FINIASZ Matthieu
Description : All the results that we have seen this week doesn't mean that code based cryptography is broken. So in this session we will see that Goppa code still resists to all these attacks. So recall that it is assumed that Goppa codes are pseudorandom, that is there exist no efficient distinguisher for ...